skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yip, Nung Kwan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We prove the convergence of a Wasserstein gradient flow of a free energy in inhomogeneous media. Both the energy and media can depend on the spatial variable in a fast oscillatory manner. In particular, we show that the gradient-flow structure is preserved in the limit, which is expressed in terms of an effective energy and Wasserstein metric. The gradient flow and its limiting behavior are analysed through an energy dissipation inequality. The result is consistent with asymptotic analysis in the realm of homogenisation. However, we note that the effective metric is in general different from that obtained from the Gromov–Hausdorff convergence of metric spaces. We apply our framework to a linear Fokker–Planck equation, but we believe the approach is robust enough to be applicable in a broader context. 
    more » « less
    Free, publicly-accessible full text available July 29, 2026
  2. We analyze a nonlinear partial differential equation system describing the motion of a microswimmer in a nematic liquid crystal environment. For the microswimmer’s motility, the squirmer model is used in which self-propulsion enters the model through the slip velocity on the microswimmer’s surface. The liquid crystal is described using the well-established Beris–Edwards formulation. In previous computational studies, it was shown that the squirmer, regardless of its initial configuration, eventually orients itself either parallel or perpendicular to the preferred orientation dictated by the liquid crystal. Furthermore, the corresponding solution of the coupled nonlinear system converges to a steady state. In this work, we rigorously establish the existence of the steady state and also the finite-time existence for the time-dependent problem in a periodic domain. Finally, we will use a two-scale asymptotic expansion to derive a homogenized model for the collective swimming of squirmers as they reach their steady-state orientation and speed. 
    more » « less